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I. THERY COF TH. LLLTMTARY #R0CISSES I
THE SP.CTROLHONE

%o IiTODUCTION

The use of the infrared spectrophone for the dstermination of the

1ifetime of vibrationally excited molecules was first described by

Slobodskaya (1): This instrument cunsists essentially of a cell con-
taining an infrared absorbing gas; the cell is illuminated intermit-
tently with radiation corresponding to an absorption band of the gas
and ¢he periodic variations in pressure due to alternate heating and
cooling are detected with a sensitive microphones. Changes in phase
shift of thls signal, relative to the phase of the radiation, are re-
lated to the mean vibrational lifetimu of the excited molecules. The
experiments of Slobodskaya were performed with various mixtures of 002
and air, and results were rejorted for both infrared fundamentals

- -1
() = 667 cm and W = 2350 o1y as well as a combination band.

An analysis of this experiment was descrited by Stepanov and
Girin (2), who considered a two state model of the vibrational levels
and assumed square vave excitation.

A detalled analysis of the inelastic collision orocess in which
vibrational energy is converted into translational energy has been given
by Sclwartz, Slawsky, ard Herzfeld (3), whose results indicate that the
probability of this sort of jrocess is a very sensitive function of both
the energy of the vibrational gquantum and of the reduced mass of the col-
lision. At room temperature and atmospheric pressure, the relaxation
time for this process may vary from the order of the 10-6 sece for vid-

rational modes of relatively low frequency, to as high as 1 sec. for
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the higher frecuency modes, Relaxation times as large as the latter
figure have not been observed for several reasons: in sound dispersion
studies, for exam.,le, the equilibrium heat capacity due to such modes
is toc small to detect.

It is the purpose of the remaincder of this paper to carry out an an-
alysis of the rates of the elementary processes occurring in the spectro-
phone with emphasis upon the fact that the large range of the parameters,
especiélly their sensitivity to the vibrational frequency, leads to come
plications in the interpretaticn of the observed phase shifts,

Be RATL OF CONVLRLIG™ OF RUDIAWT TO TRANCLATION ENTRGY
It has been shown by Sehwartz, Slawsky, and Herzfeld (3) that the

net rate of conversion translational into vibrational energy is

div . 18 (7)-% 1 1
ol AR =

where 7 1s a characteristic time constant measuring the life-expectancy
of the excited vibrational state before its termination by an inelastic
collision. E_ is the actual vibrational energy and E,(T) is the vib-
rational energy which would be in equilibrium with the translational
energy at translational temperature, T

The net rate of absorption of photons must now be considered. For

this purpose, the Einstein coefficients are recuired, namely Ay ay-1s

which are respectively the coefficients of
v+ 1,
spontaneous emission, induced emission, and induced absorption. Only
the fundamental transitions involving unit change in the vibrational
cuantum number, v, are cunsidereds These quantitles are given by the
following expressions,
-2 2
Ay mye1= OEVE gptv = o (2a)
303 l‘aG,}
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in the case of the harmonic oscillator. The dipole derivatives with
respect to the normal coordinate, Q, is evaluated at eaiilibrium and
it is assumed that only linear tems in Q appear in the expansion of /4.
Now if the number of molecules per unit volume in the vibrational state
v is indicated by n, and if F is the density of radiation of approrri-
ale frequency, the net rate of incresnse of vibrational energy, per unit

volume, at the expense of radiation is

oc
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In (3), n is the total number of molecules per unit volume.
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In the spectrophone exveriments to bte considered, the radiation

density, 5: » 18 modulated with angular frequency, ‘), so that
P2, 4 (oWt 1 g et 1 (1)

- Although in some cases the wave form may be mors nearly saiare than

IS ' ginusoidal, the detecting device is usually charply tuned to the fund-

amental modulation frequency, s» that we shall be primarily concerned
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with the second term in (L), and will only use the first two terns in
the fc¢llowing development.

By combining the expressions for interconversion of translatiocnal
and vibrational energy and for interconversion of vibrational and radiant

energy, using the modulation frequency, i , one finds

g%l = —{a *{Z:)EV f‘- EJTYra, +2a,cinwt (5)
where a = nhy/ (\'-}‘ 1 C) (5a)

If one now considers the gross heat balance in the spectrophone
cell, ancd allows for heat loss only by conduction, the heat flow

equation becomes

L VIT - ¢ 2L 4 LTg
K VT Cy Py + V' EV“EV(J)J a¢)

(6)
in which ¥ is the thermal conductivity, cy the heat capacity (for unit
volume}, and the last term represents the rate of production cf sens-
ible heat by conversion of vibrational into translation energy. The
simultaneous solation of (5) and (6) is considerably simplified in
case hv > YT , since E, (T) reduces to the zero point energy,
nhY/2, ice., a constant indepgndént of temperature and hence of the

time. OSubject to sich an assumption, the steady-state solution of (5)

is given by:

Ey = by + by sin(et +¢ ) M
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with b = “h,)/ j_ -,': (‘ YT+ i) + (-‘ i '0‘)] i s

o -
XCH |
b=nhy BT F, (o)
L)~ 3ot ¢4 12
e
e ey (7e)

Before proceeding to a discussion of the heat flow equation, we must
consider the case in which E (T) cannot be put equal to nh}//2. 5Since

the actual variations of T are small,

E, (T) = c,' AT + B (T,)

where ¢! is the vibrational heat capacity per unit volume and at constant

volume, and T = T + AT. Equations (5) and (6) are replaced by

calE£1= (6 ) By + eyt AT + By (To) + a5+ a) sinwt  (57)

(A T
K V2 (AT) - cRAT+ Ev - o/aT - E_ (To) = o (61)
v T T T

1;. formal sclution of (5!') is obtained by putting

Bv = by! + by sin(wt +9) + oot ATat
g

dth byt = By(r) + s Y( %7 4 p7e)

o+ )

C. SOLUTICI' OF THE HEAT FLG! ECUATION
First consider the case in which Ev (T) is a constant, namely nh')l/z.

The heat conduction equation (6) then becomes
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K. VaT- cvé_T + bo + by sin (Qt +¢) =0
20 T T

with the aid of (7). Again, we are interested in the steady-state, per-
jodic solution of {f). Although various boundary values may be assumed,
we shall consider only the simple one-dimensional problem, T = Tx,%)
with T(o,t) = T (§,t) = 0, ,@ representing the length of the cell. The
assumption of a solution of the form

T(x,4) = £(x) 4 g(x) sinGated) + hix) * (e d) 9)
together with the above boundary conditions leads to rather clumsy ex-
pressicns for g and h invelving linear combinations of the functions

sinh x sin X, sinh x cos x, and cosh X sin X, where
A Py A A A

2'.‘.'

&

2

A

= (10)

£

v

The average values of g(x) and h(x) over the length of the csall,
simplify somewhat to yleld the following expressions:

-b ih_gcs£+ osh sinf - 'ui\ hg-si! f(11)
- _.i_(z\_) sin 5 ) _X c ni sin 5 cosl ni_cos_i_.‘
WT P, -
sinhzi + sin® _‘K J
, XA
. by ().)finh%cosh’{. - sinh'_){:.cos {.4— cosh{ sin_g_- sin,_f.‘coa{ -:Q
Wey ! sinhz_g_ + sin® I ‘ )'_‘l
A A (12)

> P

If the condition Q>> /\obtains , the expressions for g and h simplify to

g b 1, R by /3
-~ EA S T )
(J.V‘L“cv ‘.’ -> T C’V “2 = /)
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shence it follows thet the time deoendent part of T, averaged over the
cell lemgth, is

T = by Lsin ()t +¢) + (_}__ -1) cos. (% +¢) (13)
] 8 d

which may finally he written in the form

r= b, (1~ 2_%+ Zi.\g) 1/251n (1ot +¢ + ¢') (1)

(15)

It is apparent that when Q)} ) , ¢'/will be very close to ~M/2, and
although >\ may vary slightly if the pressure or composition of the gas
in the spectrophone cell is altiered, ¢' wi1ll remain almost constant,

Turning to the case in which EV(T) is not constant, we shall neglect
the dependence of phase shift upon heat conduction, which is simply

equivalent to letting K - 0 in (8)s In such a case, the functions

g and h assume the values:

-2 2
E=w T vh (16)
°J(’Y- GV Py 2]
[N
h= (¥- 0 Pywr, (7

c, [‘(.,_02?:2)2 0272y 2]

in which = ¢ t/c_, ise., the ratio of the vibrational heat capacity to

PRS-
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8.
the translational heat capacity. Here the phase shift turns out to be

gla=tifr 0 op
re. 7/
Continuing the assumption that 4»is high enough so that heat
conduction does not play an imjortant role, we now combine the results
of (7), (™), (7¢), (16), and (17) to obtain an expression which gives

the temperature amplitude and ths overall phase shift:

AT = AT, sin(wt+ @)

T = 0T Nh (4 . = =4
2l - (* Qgr w‘t’)ﬁ{wmfj ’Qrwz %((sm )’] A
UL’ ‘\2 [ g Q. —
) %\‘/ AT -t s oty) ] lwd)spey ] L

and ?T 7‘%“{\( -(.‘): | ‘___)_f()( (_-a‘/)(')’ oLl A-p=? ) (20)
7

(LT Tycwrr R () ¥

Here the integrated absorbtion coefficient, r¥ s> at the gas density
employed, has been introduced; see Thorndike, ‘ells, and Wilson (5).
I, is the intensity of the modulated radiation.

Some simplification of (20) is greatly desirable in order to relate
the observed phase shift to T . Other factors heing equal, a small
valus of O U in comparison with unity leads to a large amplitude and
to the following simplificetion of (20). If AT <<} and if Q? 62 <7 ,

( 20) becomes approximately

= T
é'c tan ~— -~ .}--2:«-’2:

PRIV
since {7 is then necessarily small compared with unity. This situa-
tion is realized experimentally for lower frequency molecular modes,
sy below 1000 cm'l, whereC is less than 10'2‘ secy Y 2 0.1, with

appropiate choice of @ ,



(J must be employed to justify the simplification of ’\',an'l

Ge
For the higher frequency molecular modes, say above 2000 em™t G

2

may become quite large, perhaps 102 seconds or greater. Using Eggers

and Crawford's (4) value of Dﬂ for the stretching mode of CO,, T

FPQ)
[N ¢

would be 42.7 vith T= 10"2 sec, Thus, for high frequency molecular
modes of high intensity, we may perhaps need to consider the case in
which (X7 >>|, which simolifies ¢to

¢Qtan"1 wl = _l;f_ - W
provided WTT<<| « This latter situation is relatively unfavorable,
however, for the following reasons: (() when ¢ is large, a very small
just employed;
(L) this leads to relatively large conduction heat loss, In any case,
it appears that Slobodskayats (1) identification of the observed time
lag with 7 is not justified for the 2350 em™* band of CO, when a mocu-

lation frequency of W = |74 sec.”! yas employed.

D. CONCLUSION
It has been shown that the phasz shift of the temperature variations
in the spectrophone cell, averaged over the lengith of the cell, depends
in a complex manner upon the following variables:

O = probability of spontaneous emission

'Y = ratio of vibrational to translational heat capacity
(1) = modulation frequency
‘, = mean lifetime for inelastic collisions.

Although (X and ¥ are known with good accuracy for the mcdes of vibration
to be studied experimentally, it appears necessary to work under condi-

tions such that the observed phase shift is simply related to ¢
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this situation is attained experimentoclly most easily for low frequency
molecular modes, eog., less than 1000 cm"l, or for higher frequencies

in the case of collisions with very light molecules such as H2 or He,

It is further necessary that w?¢ 2y, Since ¥ is 0.133 when the mole-
cular freqguency is 1000 em~t s and{may be of the order 10"4’ (1) should
be less than 102,

When (7 is much less than unity, anc, in addition, q;'cz <Y

t.ae amplitude of the temperature variations reduces to

_ T AT
A = A
o ey
and when fT«<< | , but w-. % >

AT, = AT,

It is thus apparent that optimum response is obtain whentgis of
the order of ')"/ 2 s a condition which is somewhat in conflict with
the optimum situation for a simple relation between & and ¢ « If ¥
vanishes, the response iiproves as() decreases, but this conclusion,

of course, neglects the effect of heat conduction, which demands that

W >> =lv

for good response,
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